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A new experimental system has been developed, which enables measurements of linear as 
well as non-linear complex conductivities to be made. The frequency dependence of linear 
to fifth-order non-linear complex conductivities at different temperatures in a polyethylene 
oxide/salt complex can then be measured. A characteristic conduction relaxation 
phenomenon was observed in the spectra, which suggested the existence of different 
ion-conduction mechanisms between the high- and low-frequency regions. It was also 
found that the ratio of linear to non-linear conductivities was closely related to the 
elementary process of ionic transport. Furthermore, this ratio obtained from non-linear 
measurements allowed an estimate of the important parameters which characterized ionic 
transport in ion-conducting polymers, such as the hopping distance of an ion or the size of 
a connected cluster of the site capable of ion hopping, without the need for any additional 
assumptions. Thus, it was found that in a polyethylene oxide/salt complex, the typical size of 
a connected cluster of the effective sites capable of ion hopping was approximately 4 nm. 

1. Introduction 
In the past, studies on ion-conducting polymers have 
centred around polyethylene oxide and alkali metal 
salt complexes [,1-6]. These studies were initiated 
by the series of studies conducted by Wright and 
co-workers in the 1970s, who found relatively high 
conductivity in the polyethylene oxide/salt complex 
[-1-3]. Studies in this field were further promoted by 
the report of Armand [-7] who indicated that the 
complex of polyethylene oxide and alkali metal salt, in 
particular lithium salt, was a lithium-ion conductive 
solid electrolyte, and that it could possibly be applied 
to solid-state batteries, for example. Various new ion- 
conducting polymers have been produced with the 
aim of actual utilization [1-7]. 

Polymers adsorbing low molecular weight com- 
pounds such as water have been known to show high 
ionic conductivity. In such polymers, the direct cause 
of high ionic conductivity, for example, dissociation 
and transfer of ions, depends on the type of low 
molecular weight compounds, and polymers themsel- 
ves basically play the role of a matrix. In contrast, 
ion-conducting polymers are solids with high concen- 
trations of dissolved electrolytes [4, 5]. Therefore, the 
polymers themselves induce higher ionic conductivity 
than that of typical ionic solids such as NaC1 [4, 5]. 
Clarification of the mechanism behind polymer and 
ion interaction is one of the issues that has been 
attracting the attention of many researchers in various 
fields [,,1-7]. 

The temperature dependence of d.c. conductivity, 
CYd .... in ion-conducting polymers [4, 5] is generally of 
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the following Williams Landel-Ferry (WLF) type [8] 

log C~d.o.(T) _ CI(T--  Tg) (1) 
~d.~.(Tg) C2 + (T - Tg) 

or Vogel-Tamman Fulcher (VTF) type E9-11] 

A 1 - A 2 
C~d.~.(T) -- T1/2 er_To (2) 

where C1, C2, A1 and A2 are constants. Tg is the glass 
transition temperature, and To is the temperature at 
which configuration entropy becomes zero. To explain 
this temperature dependence of the d.c. conductivity, 
the free-volume model [,,12] and its expansion, the 
configuration entropy model [13, 14], are often used. 
Assuming the cooperative nature of ionic transfer and 
local motion of polymer chains, the temperature de- 
pendence of mobility is calculated on the basis of local 
motion of polymer chains, and the temperature de- 
pendence of conductivity is presented based on this 
explanation [4-6, 14]. 

Detailed information regarding the correlation be- 
tween ionic transport and dynamic behaviour of the 
polymer chain is expected to be obtained from the 
investigation of the frequency dependence of conduc- 
tivity. In order to obtain useful information on this 
correlation, the frequency dependence of permittivity 
and conductivity in ion-conducting polymers was 
measured by many researchers [4, 5,15-191. However, 
although the above-mentioned free-volume model 
is effective in explaining d.c. conductivity because 
thermodynamics is introduced for the explanation of 
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static states, it is useless in explaining the frequency 
dependence of conductivity. 

As a model to explain the frequency dependence of 
conductivity in ion-conducting polymers, the dynamic 
percolation model, an expansion of the percolation 
model, was proposed by Ratner et aI. [20] and Hari- 
son and Zwanzig [211. However, the dynamic percola- 
tion model is very complex, because it contains many 
physical constants in equations representing the fre- 
quency dependence of conductivity which cannot be 
determined experimentally. Therefore, in order to ex- 
plain the frequency dependence of conductivity ob- 
tained by experiments, many assumptions must be 
made for the physical constants. Thus, although this 
model is theoretically established, complete verifica- 
tion of its validity by experiments is actually difficult 
to accomplish. 

It has been noted that studies on non-linear spectra 
of conductivity may provide information regarding 
the elementary processes of ionic transport and forma- 
tion of potential energy, which is difficult to obtain 
from measurements in the linear region. With respect 
to non-linearity of permittivity, pioneers Furukawa et 
aI. [22] studied ferroelectric polymers. Referring to the 
methods used in their study, we have further advanced 
this field of research to develop a measurement system 
for non-linear conductive spectra. In this study, the 
newly developed measurement system was used to 
measure the temperature dependence of linear to fifth- 
order non-linear complex  conductive spectra in 
a polyethylene oxide/salt complex. The observed non- 
linear conductive spectrum exhibited a very complic- 
ated form including a relaxation phenomenon. By 
detailed analysis of these non-linear spectra, various 
parameters, such as non-linear d.c. conductivities and 
non-linear relaxation strength, were evaluated. Fur- 
thermore, the conduction mechanism of ions was 
studied using these evaluated parameters in an ana- 
lytical method which took advantage of the character- 
istics of experiments on non-linear conductivity. 

response of electric current, I(t), is represented by 

I(t) = ~ (I'~cosncot + I'~sinncot) (5) 
n = l  

We have detected the in-phase and 90 ~ out-of-phase 
components of the electric current, I(t), with frequency 
nco. The phenomenological theory of stationary linear 
response is well established on the basis of Boltz- 
mann's superposition principle. On the other hand, 
extending this theory of stationary linear response to 
a non-linear system, Nakada has developed a phe- 
nomenological theory of the non-linear relaxation re- 
sponse [-231. According to this theory, the resulting 
response can be expressed by a sum of convolution 
integrals of the applied electric field at multiple time 
points and the non-linear after-effect functions. When 
the excitation is given by Equation 4, the resulting 
response, I(t), is calculated as follows 

I(t) = [~'l(co)coscot + cy'~(co)sincot]Eo + 

[c~;(3 co)cos 3 cot + cy~(3 co)sin 3cot + 

B'3(co)cos cot + B;(co)sin cot]E~ + 

[~;(5co)cos 5cot + ~;(5co)sin 5cot + .-. ] 

Eo 5 + ... (6) 

where ell(co) and C~'l'(co) are the real and imaginary 
parts of linear complex conductivity c~(co) = cr 
+ j~'~(co), respectively, cr and c~'(nco) are also the 

real and imaginary parts of nth-order (n = 3, 5, ... ) 
non-linear complex conductivities cy*(nco)= cy',(nco) 
+ jcy~(nco); respectively. 

Comparing Equations 6 and 5, we find relationships 
between the amplitude of the in-phase component, In, 
and the amplitude of the applied field, Eo, as follows 

I'i = CY'l(co)Eo + ~cy;(co)E~ + --. (7) 

2. Experimental procedure 
When the direct current, Id .... for a non-linear system 
is expanded in odd powers of the static electric field, E 

/d .c .  = (~ld.c.  E + cY3a.o. E3 + ~Sd .c .  E 5  -}- " ' "  (3) 

we can express the linear and non-linear conduc- 
tivities in terms of coefficients of the exponents. Here 
Chd.o. is the linear d.c. conductivity. The coefficient 
CY, d.c. for n /> 3 defines the nth-order non-linear d.c. 
conductivity. However, when excitation is not a static 
field but a sinusoidal electric field, it is complicated in 
that complex non-linear conductivity is defined. On 
the other hand, complex non-linear permittivities have 
been already reported by Furukawa et al. [22]. 

For measurements of linear and non-linear conduc- 
tivities, we applied a sinusoidal electric field 

E(0  = Eocos cot (4) 

with amplitude, E0, and angular frequency, co. If there 
exists a relaxation phenomenon in a sample, the 

1 5 

] , 5 1'5 = ]~c~5(5co)Eo + .-. (9) 

Furthermore, the relationships between 90 ~ out-of- 
phase components, 1;~(n = 1, 3, 5 . . . .  ), and Eo are of 
the same forms as those of Equations 7-9, respectively 

E = ~'~(co)Eo + ~ ; ( c o ) e ~  + ... ( lo)  

I'~ = ~cs~(3co)Eo 3 + ~6(7~(3co)Eg + -.. (11) 

r ;  = ~6~;(sco)Eo ~ + ... (12) 

As a result, we have determined the real compo- 
nent, c~',(nco), and the imaginary component, ~(nco), 
of linear and non-linear complex conductivities, 
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Figure 1 Schematic diagram of an experimental system for non- 
linear complex conductivity measurements.  

a*(nco) = c~'.(nco) + ja~(n~o), as follows 

2,-11,, 
a', ( n c o ) -  (13a) 

E~ 

2"- 11" 
~2(nc0) - - - ( n = l ,  3, 5, ... ) (13b) E~ 

Owing to their complexity, the terms a*(nco), a',,(no~) 
and c~'(nco) are abbreviated below to ~*, a',, a~', 
respectively. The complex permittivities, e*(nco)= 
~'(nm) - je~(n~o), can be calculated from 

�9 t t  cy* = cy', + JOy, as 

t !  cy', = nroe,(n~o) (14a) 

! 

a~, = moa,(no~) (14b) 

The terms e*(nc0), e',(no~) and G'(nc0) are abbreviated to 
! t t  

8n*, gn~ I~n' 
Based on this principle, we have developed a new 

experimental system which enables measurements of 
linear as well as non-linear complex conductivities 
c~* = ~y', + ja;~ (n = 1, 3, 5) in the frequency range of 
25 mHz to 5 MHz. Fig. 1 shows a schemati? diagram 
of the experimental system. The excitation wave is 
propagated to a sample. The induced current of the 
electrode is detected by a current amplifier. The funda- 
mental and higher harmonic responses are then meas- 
ured according to Equation 5, and the voltage and 
current signals are simultaneously stored in a wave 
memory. The detected data can also be calculated in 
a microcomputer. 

Using this system, we examined a variety of ion- 
conducting polymers including polyethylene oxide 
and its derivatives [24, 25]. Special attention was paid 
to a polyethylene oxide (PEO) whose characteristics 
were improved by the addition of SiO2 E24] and 
doping with LiC104 (Li+/EOunit  = 0.1). We believe 
that the polyethylene oxide modified by SiO2 addition 
and doping with LiC104 exhibits lower crystallinity 
than other unmodified systems on the basis of its 
X-ray diffraction pattern [24]. The glass transition 
point, Tg, was determined to be about - 3 0 ~  by 
dynamical mechanical measurements. 

Typical experimental results of the electric field de- 
pendence of the in-phase component I', (n = 1, 3, 5) in 
the electric current are shown in Fig. 2. In the top 
figure, I'~ is plotted against the amplitude, Eo, of the 
electric field. Using Equation 7, we have obtained 
a'~ from the gradient of the linear relationship. When 
I ;  is plotted against the third power of Eo, we obtain 
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Figure 2 Dependence of the in-phase components of the (a) linear, 
(b) third-order and (c) fifth-order harmonic electric currents, I'~, 
I; and I;, as a function of the amplitude of applied field Eo. 

c~; from the slope referring to Equation 8. In the 
bottom figure, I ;  is plotted against the fifth power of 
E0. We also obtain ~; from the slope. Using the same 
method, we can obtain the imaginary part cy~' of the 
complex linear and non-linear conductivities. 

2 0 8 3  



E 
t.O 

0 
,_1 

- 2  

- 4  

- 6  

- 8 -  

- 1 0  

(a) 

0~ ~ ~  

, 6 0 o c  , , 

- 2  0 2 4 6 

Logf( Iog Hz) 

- 2  

A 

"- - 4  
E 

0 9  

133 
0 

. ~  - 6  

- 8  

-10  

(b) 

20~ 
0 ~ 

I -  d ~  - 6 ~ 1 7 6  I I I , 

- 2  0 2 4 6 

Logf( Iog Hz) 

Figure 3 Frequency spectra of the (a) real and (b) imaginary com- 
ponents of the linear conductivity. 

3. Results  
Fig. 3 shows the frequency spectra of the linear con- 
ductivity cy~' = cr + joYS. At 20 ~ (Y'I remains nearly 
constant in the low-frequency range and cy'~ shows 
a peak. Both ~'1 and (~'~ increase with increasing fre- 
quency. With decreasing temperature, the spectra shift 
to the lower frequency region. Results of the third-order 
non-linear conductivity cy~ = (~  +jcy'~ and the fifth- 
order non-linear conductivity ~ = (~'5 + jcf~ are shown 
in Figs 4 and 5, respectively. It  is found that  cy~ and 
( ~  show characterist ic  frequency spectra  consist ing of 
the peaks  of  cy~ and c~, respectively. As t empera tu re  is 
decreased, the spectra  shift to the lower frequency 
region with a considerable  reduct ion of peak  height. 

An attempt was made to reproduce the observed linear 
conduct ive  spectra  usmg the total  conduct ivi ty  CY*b 

lb O'ld.c. -]- s - [ - j c o ( a l i . - - j a l l o , ~ )  (15) 

( Jc~  (16) CY~relax AC~l[l- + (jco~l)~'] =' 
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Figure 4 (a, b) Frequency spectra of the third-order non-linear con- 
ductivity. 
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Figure 5 (a, b) Frequency spectra of the fifth-order non-linear con- 
ductivity. 
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Figure 6 (a, b) Comparison of (O) observed and (--) fitted fre- 
quency spectra of the linear conductivity at 0 ~ 

where CYd.o. is the d.c. conductivity, A ( Y  i is the relax- 
ation strength, and ~a is the relaxation time. 13~ is 
a parameter expressing the distribution of relaxation 
times. ~ describes the skewness of the dispersion. 
e~ i. and ~1 loss in Equation 15 are the real and imagi- 
nary parts, respectively, of the permittivity which is 
assumed to be independent of frequency. The effect of 
electrode polarization can be expressed by an equiva- 
lent capacitance, ~*1 [263 

e~*l = eolo(jc0)"-t (m < 1) (17) 

which is connected in series with CY*b. Thus the linear 
complex conductivity c~* = c~'~ + j~'~ of the sample is 
given by 

= + ( 1 8 )  

Using the least squares method, we determine the 
constants, for example, cy~ d.C. and Ach, in Equations 
15-17. Fig. 6 shows a typical example of the results. In 
both ~'1 and cy'~ of linear complex conductivity, ~*, the 
experimental data (�9 obtained at 0 ~ are shown to 
be reasonably well reproduced by Equation 18. In the 
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Figure 7 (a, b) Comparison of (O) observed and ( ) fitted fre- 
quency spectra of the third-order non-linear conductivity at 0 ~ 

low-frequency region below 0.1 Hz, the difference in 
tendency between the solid line and the dashed line 
corresponding to d.c. conductivity, ch a .... indicates 
the effect of electrode polarization. Applying this ana- 
lytical method to experimental results obtained at 
various temperatures, it is found that the electrode 
polarization does not affect the observed spectra in the 
frequency region higher than 1 Hz. 

We next attempted to reproduce the observed non- 
linear conductive spectra. We assumed the equation 

s = l~Und.c. -'}- nO-nrelax* -}- Jlzo)(gnin --JSnioss) (19) 

(jc01:.)"~'.l~,, 
* = Acy, (20) 

( Y . r e l a x  [1 + (jc0"c,)P"] "~~ 

with n = 3, 5 where the suffix n represents the nth- 
order non-linear conductivities. Here o,  a.c. is the nth- 
order d.c. conductivity, Ao, is the relaxation strength 
and z, is the relaxation time. [3, is a parameter express- 
ing the distribution of relaxation times and % de- 
scribes the skewness of the dispersion, e, in and a, loss in 
Equation 19 are the real and imaginary parts, respec- 
tively, of the permittivity which is assumed to be 
independent of frequency. Fig. 7 shows an example of 
the results of the third-order complex non-linear con- 
ductivity c~* = cy~ + j ~  at 0~ The experimental 
data are shown to be reasonably well reproduced by 
Equation 19 with n = 3. Fig. 8 shows a typical 
example of results of the fifth-order complex non- 
linear conductivity cy* = c~; +jcy~ at 0~ Good  
agreement between the observed data and those cal- 
culated by Equation 19 with n = 5, has been obtained. 
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Figure 8 (a, b) Comparison of (O) observed and (--) fitted fre- 
quency spectra of the fifth-order non-linear conductivity at 0 ~ 

F r o m  Figs 6-8, we found that  the solid curves cal- 
culated f rom Equa t ion  19 reproduce the respective 
observed spectra reasonably well. The typical results 
of  these best-fit parameters  obta ined by the same 
method  are summarized in Table I. 

The function of  the linear conduct ive relaxation, 
(Yl* relax, in Equat ion  15 results in a decrease in con- 
ductivity f rom or1 a.e. + A~xl to or1 d.c. with decreasing 
frequency. Equa t ion  15 is of  the same form as that  of  
Equa t ion  19 with n = 1. When  ~1, 131 and n equal one, 
the relaxation par t  in Equa t ion  19 is essentially the 
same as the linear dielectric relaxation function [27]. 
The corresponding dielectric relaxation strength over 
100 suggests that  the ionic mot ions  accompany  a large 
dielectric polarization. O n  the basis of  these results, 
we speculate that  there are two separate conduct ion  
mechanisms in a polyethylene oxide/salt complex. The 
high-frequency conduct ion  could be at tr ibuted to the 
rather  free mot ion  of  ions which hop  to adjacent sites 

to yield a conductivi ty of ~la.e. + Ach- Such mot ion  
seems to occur  in limited domains.  At low frequencies, 
ions reach the edge of such domains  to generate polar- 
ization and yield a low conductivity,  ~ a .... governed 
by their hopping  to adjacent domains.  U p o n  further 
development  of  these speculations, we reach much  the 
same conclusion with regard to ion t ranspor t  as the 
dynamic  percolat ion theory [20, 21]. 

Fur thermore ,  an explanat ion for non-l inear con- 
ductivities is necessary. The non-l inear dielectric re- 
laxation function, ~.*relax [22, 23] 

* ' * (21) ~nrelax = Jg/fl)gnrelax 

As, 
* = (22) ~nrelax [1 "]- w( ifl)'~n:]lSnqn~ 

with n = 3, 5 does not  affect the non-l inear conductiv-  
ity at either low or  high frequencies. We have already 
found that  the non-l inear relaxation parL * c~, relax, with 
n = 3 or  5 in Equat ion  19 is not  the same as the 
non-l inear dielectric relaxation function, •n*relax in 
Equa t ion  21, even if % = 13, = 1. In other  words, the 
non-l inear relaxation, %*relax in Equat ion  19 affects 
the non-l inear conduct ivi ty  at both  low and high 
frequencies. This effect in Equat ion  19 is wor th  noting. 

4.  D i s c u s s i o n  

The ion-conduct ing proper ty  of  the system has been 
already determined on the basis of the fundamental  
principle with regard to ion t ransport  in each model  
[4-61. Moreover ,  the basic parameters  of each model, 
such as the distance of  ion hopping  between available 
sites, are related to this fundamental  principle. On  the 
basis of  these factors, the conduct ion  mechanism of 
ions in ion-conduct ing polymers is studied using an 
analytical me thod  which takes advantage  of the char- 
acteristics of  experiments on non-l inear conductivity. 
Now,  we show two typical examples of results f rom 
the applicat ion of  this analytical me thod  using non-  
linear measurements  to the models of ion t ranspor t  in 
a polyethylene oxide/salt complex developed by many  
theorists [4-6] .  One involves the dynamic  percolat ion 
model  E4, 6] and the other the hopping  and variable- 
range hopping  model  [28]. 

The dynamic  percolat ion model  characterizes ionic 
mot ion  in terms of  hopping  between neighbouring 
posit ions [4, 6 ,20 ,21] .  This model  developed by 
Ratner  et al. [20] takes into account  the dependence 
of ionic mot ion  rates on the fluidity, or rate of  segmen- 
tal motion,  of polymer  host. A characteristic rate of 

TAB L E I The d.c. conductivity and conductive relaxation strength obtained as best-fit parameters at various temperatures 

d.c. conductivity Conductive relaxation strength 

T cqd.o" craa.~ ~sa.o. A{71 IA~31 Act5 
(~ (Sin- 1) (Sin V- 2) (Sm 3 V- 4) (Sm - 1) (Sm V- 2) (Sm 3 V-4) 

-- 10 2.38 x 10 -s 2.51 x 10 -18 9.51 x 10 .35 9.12 x 10 .6 2.40x 10 -is 1.52 x 10 .35 
0 9.80 x 10 4 2.28 x 10 -17 1.05 x 10 .33 5.24 x 10 .4 1.98 x 10 -17 1.23 x 10 .33 

10 1.98 x 10 -3 5.62 x 10 -17 1.99 x 10 .33 2.02 x 10 -3 5.01 x 10 -17 2.51 x 10 .33 
20 2.95 x 10 -3 9.05 x 10 -17 3.03 x 10 .33 4.05 x 10 -a 8.01 x 10 -17 4.51 x 10 -33 
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renewal, X, is defined, which characterizes the rate at 
which a motion pathway from one site to another Crl.d.o. 
becomes available for ion motion. That  is to say, the 
motion of the ion is controlled by the dynamics of the (~3d.c. 
polymer host and cannot occur unless it is promoted 
by segmental motion of the polymer host [4, 6, 20]. 
This leads to typical curved Arrhenius plots for con- ~sa.c. 
ductivity, and a suggestion that decreasing the glass 
transition temperature as much as possible yields 
maximal ionic mobility [4, 6]. The characteristic of 
the dynamic percolation model is that the ion trans- 
port on a percolation lattice both above and below crln = 
thresholdf~ can be understood using the same general 
formalism, including frequency and temperature de- 
pendence [-4-6, 20]. 

We first apply the dynamic percolation model [20] (Y3h = 

to the observed conductive spectra. Following the dy- 
namic percolation model, the resulting conductivity, 
c~(o), at frequency m may be given by 

f = 
~(O) -- nee2 e-Jmt~s2e-~tpo(s,t)dt (23) ~s5n 

kT o 

where n~ is the carrier density, T the absolute tem- 
perature, k the Boltzmann constant, e the elementary 
charge, and po(s, t) the conditional probability on site 
s at time t. The exact solution of the integration shown 
above as obtained by Druger et al. [20] is very com- 
plicated; thus it is difficult to analyse the observed 
spectra of linear and non-linear conductivities using 
their solution. We therefore have to obtain an approx- 
imate solution to describe the behaviour of the con- 
ductivities in the dynamic percolation model. We can 
find approximate solutions for both the small m and 
large o behaviour for or(to) b'y expanding Equation 23, 
as follows 

n dne~O~e2 ( r2 ) o 
(24) (Yd.c. (re=O) = ( X + ot)kT 

and 

ndneOte2(r2)o 
- ( 2 5 )  crn (~ ~176 ) k T 

with 

= %n,f(s)W (26) 

where ( r2)0  is the mean-squared displacement on the 
static percolation lattice as t approaches infinity, no is 
the transformation coefficient, ns is the probability of 
existence on site s, nd is the dimensional constant, f (s) 
is the fraction of bonds on site s and W is the mean 
hopping rate between available sites. 

Now we are ready to calculate direct current, Id .... 
and current, In, at high frequency on the basis of 
Equations 24 and 25, respectively. When Ia.r and 
Ih are expanded in odd powers of E, we can express the 
linear and non-linear conductivities in terms of coeffi- 
cients of exponents as follows 

Id .c .  = {71a.c.E + ~3d.c.E 3 + (Y5d.c.E 5 + "'" (~ < ~) 

(27) 

ndT/ee2(r2)~ I )~2krexp(AU/kr)~ 
- kT X - %f(s)n, ea* j (28) 

X2endn~(r2)oexp(AU/kT) ( ea* ~3 
= 3%f(s) n,a \ ~ ]  (29) 

3)~2ertdrte(r2)o exp (aU/kV) ( ea* ~5 
= ( 3 o )  

In = (YlnE + O'3hE 3 + ~sshE s + "'" (31) 

2nanens%f(s)e2 (r2)o exp( - zXU/k T ) ( ea* 
kT \2KT/  

(32) 

ndnens~of(s)e2(r2)o exp( -- AU/kT) ~ ea* ~3 
3kT \ ~ /  

(33) 

ndrtens~of(s)e2(r2)o e x p ( -  AU/kT) ( ea* ~5 
60k T \ 2 - ~  // 

(34) 

where O'nd.c" is the nth-order d.c. conductivity and 
onh is nth-order conductivity at high frequency. AU is 
the activation energy and a* is the typical size of 
a connected cluster of the effective sites capable of ion 
hopping per characteristic time. Because Equations 
3 and 27 turn out to be exactly the same, we can 
obtain expressions for linear and non-linear d.c. con- 
ductivities, Cr,a .... using the dynamic percolation 
model. We also obtain linear and non-linear conduc- 
tivities, CYnh, at high frequency from Equation 31. The 
obtained expressions for O,d.o. and G,n contain many 
physical quantities which cannot be obtained experi- 
mentally. However, the cluster size, a*, can be ob- 
tained experimentally by our method, as described 
below. If we take the ratios of ~,d.c. to %,d.c. and ~nn to 
C~mh (n and m = 1, 3, 5), we find simple equations as 
follows 

(Y5d.e. 9eZa*2 
t~3d.c" 5680k2T 2 

(35) 

(Y31a e2a*2 

~lh 24k 2T2 
(36) 

(Y5h e2a*2 

O'3h 80k2T 2 
(37) 

On the other hand, the ratio O'3d . c . /O ' l d . c "  is omitted 
from the above list, because many physical quantities, 
which cannot be obtained experimentally, remain. 
Equations 35-37 contain only measurable parameters. 
Substituting three parameters, e, k and T into Equa- 
tions 35 37, a* is obtained without any additional 
assumptions. The case of interest here is that a* cal- 
culated by Equations 35-37 should equal each other. 
We substitute Cr3d.c. and ~5d .... obtained as best-fit 
parameters in linear and non-linear conductive 
spectra at each temperature, into Equation 35. As a 
result, we obtain a*-~5 nm, nearly independent of 
temperature. In much the same way, we also obtain 
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a*-~4nm, substituting ~h,  ~3h and ~sh into Equa- 
tions 36 and 37. It is of importance that the two 
estimates approximate each other well, because a* 
calculated by Equations 35-37 should be equal, as 
mentioned above. This finding supports the appropri- 
ateness of our method; that is, a* is obtained exactly 
using this method. We consider next the physical 
meaning of a*. Below the static percolation threshold, 
the carrier is typically limited to a region of character- 
istic dimensions within each renewal interval in the 
dynamic percolation model. Consequently, it is suffi- 
cient to understand that the obtained a* of 4-5 nm 
corresponds to the typical size of a connected cluster 
of available sites capable of ion hopping. Therefore, 
a* ___4-5 nm in the dynamic percolation model is suit- 
able in terms of elucidation of the mechanism of ion 
transport in a polyethylene oxide/salt complex, even 
when its structure has been taken into consideration 
[4-6, 24]. 

Keeping the above-mentioned conclusion in mind, 
we consider next the case where our non-linear 
method is applied to another model. Using the hop- 
ping and variable-range hopping model 1-28] in which 
the ion is transferred by hopping between sites, the 
resulting direct current, Ia .... is given by 

Ia.o. = crla.c.E + cr3a .e .E  3 + CYSd.e.E 5 + ""  (38) 

eZaZPoN ( A U )  
cYla.o. - k r  exp - - - ~  (39) 

Cr3a.~. - 24k3T3 exp - - ~ -  (40) 

e6a6poN ( A U )  
r - 1920kST5 exp - ~  (41) 

where c~,a.c, is the nth-order d.c. conductivity 
(n = 1, 3, 5, ... ), a is the hopping distance and Po is 
the probability of hopping as T approaches infinity. 
AU is the difference between the energies of the two 
states. If we take ratios, then 

O'3d .c"  e2a 2 
- ( 4 2 )  

(~ld.c. 2 4 k 2 T 2  

been extremely useful in determining the mechanism 
of ion transport in ion-conducting polymers. 

5. Conclusion 
A new experimental system has been developed which 
enables measurements of linear as well as nonlinear 
complex conductivities. Using this system, we meas- 
ured the frequency dependence of linear to fifth-order 
non-linear complex conductivities in a polyethylene 
oxide/salt complex. We proposed a new empirical 
function to reproduce the observed linear and non- 
linear conductive spectra which show the complicated 
characteristic frequency dependence together with the 
relaxation phenomenon. Furthermore, we found that 
the validity of the basic parameters can be examined 
without any additional assumptions by using the 
values of non-linear conductivities obtained from ex- 
periments. Using this method, we determined whether 
the two-site hopping model or the dynamic percola- 
tion model is better without any additional assump- 
tions. We then evaluated the basic parameters, such as 
the hopping distance in the two-site hopping model or 
the size of a connected cluster of the effective sites 
capable of ion hopping in the dynamic percolation 
model, which characterize the behaviour of ion trans- 
port in ion-conducting polymers. As a result, we 
conclude that the dynamic percolation model is con- 
sistent with the prediction based on the structure of 
a polyethylene oxide/salt complex. Thus, the non- 
linear technique developed here appears to be useful 
for the empirical determination of the validity of the 
theory. 
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O-5d .c  ' e2a 2 

o3d.o. 80k2T 2 
(43) 

In much the same way as above, substituting Cyla .... 
r and c~sa .... obtained as best-fit parameters in 
linear and non-linear conductive spectra at each tem- 
perature, a - 100-200 nm is obtained without any ad- 
ditional assumptions, and has no physical meaning in 

terms of the structure of a polyethylene oxide/salt 
complex [4-6, 24]. This indicates that a-~ 100-200 nm 
is not as precise as a*-~4-5 nm obtained by the dy- 
namic percolation model. Consequently, we find that 
the dynamic percolation model is superior to the two- 
site simple hopping model. As mentioned earlier, even 
with only the experimental values, we can determine 
whether the two-site hopping model or the dynamic 
percolation model is better without any additional 
assumptions. Thus, non-linear measurements have 
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